Difference between revisions of "JP4"

From ElphelWiki
Jump to: navigation, search
(link: Python PIL Writing Your Own File Decoder)
Line 84: Line 84:
 
Considering that the accessible optics does not give the full permission of a sensor resolution, it [[JP4_HDR|can be]] used for increase in a dynamic range of a image sensor.
 
Considering that the accessible optics does not give the full permission of a sensor resolution, it [[JP4_HDR|can be]] used for increase in a dynamic range of a image sensor.
  
== JP4 processing on the host ==
+
== JP46 processing on the host ==
  
=== JP4 image decoding in MATLAB ===
+
=== JP46 image decoding in MATLAB ===
 
JP4 format can be easy manipulated by [http://www.mathworks.com/matlabcentral/fileexchange/22144 MATLAB] [[Image:Fruits_jp4.jpg|thumb|JP4 image]]
 
JP4 format can be easy manipulated by [http://www.mathworks.com/matlabcentral/fileexchange/22144 MATLAB] [[Image:Fruits_jp4.jpg|thumb|JP4 image]]
  
Line 124: Line 124:
 
  imshow(J);
 
  imshow(J);
  
=== JP4 to DNG image conversion ===
+
=== JP46 to DNG image conversion ===
  
 
==== movies ====
 
==== movies ====
Line 165: Line 165:
 
  Example: ./elphel_dng 100 example_JP4.jpeg example.dng
 
  Example: ./elphel_dng 100 example_JP4.jpeg example.dng
  
=== JP4 video stream decoding using MPlayer ===
+
=== JP46 video stream decoding using MPlayer ===
JP4 stream can be decoded by MPlayer.
+
JP46 stream can be decoded by MPlayer.
 
Use this [[http://community.elphel.com/files/mplayer/debayer.diff this patch]]
 
Use this [[http://community.elphel.com/files/mplayer/debayer.diff this patch]]
 
   patch . -p0 < debayer.diff in the mplayer source dir
 
   patch . -p0 < debayer.diff in the mplayer source dir

Revision as of 05:24, 13 July 2011

Note: the JP4 mode described here is referred as "JP46" in current 8.0 firwmare

JP4 Format

We have added a special JP4 mode that bypasses the Demosaic in the FPGA and provides an image with pixels in each 16x16 macroblock that are rearranged to separate Bayer colors in individual 8x8 blocks, then encoded as monochrome. Demosaic will be applied during post-processing on the host PC. This section describe different algorithms and implementations used to provide this functionality.

Main goals:

- compression speed improvement
- possibility to obtain more high quality image (near to RAW)
- drasticaly lowering data size

Different JP4 Modes in 8.X Software

only modes 0-2 can be processed with standard libjpeg:

  • 0 - mono6, monochrome (color YCbCr 4:2:0 with zeroed out color componets)
  • 1 - color, YCbCr 4:2:0, 3x3 pixels
  • 2 - jp46 - original JP4 (from 7.X software), encoded as 4:2:0 with zeroed color components
  • 3 - jp46dc, modified jp46 so each color component uses individual DC diffenential encoding
  • 4 - reserved for color with 5x5 conversion (not yet implemented)
  • 5 - jp4 with ommitted color components (4:0:0)
  • 6 - jp4dc, similar to jp46dc encoded as 4:0:0
  • 7 - jp4diff, differential where (R-G), G, (G2-G) and (B-G) components are encoded as 4:0:0
  • 8 - jp4hdr, (R-G), G, G2,(B-G) are encoded so G2 can be used with high gain
  • 9 - jp4fiff2, (R-G)/2, G,(G2-G)/2, (B-G)/2 to avoid possible overflow in compressed values
  • 10 - jp4hdr2, (R-G)/2, G,G2,(B-G)/2
  • 14 - mono, monochrome with ommitted color components (4:0:0)


JP4 HDR

Bayer pattern look like this

RGGB
R G1 R G1
G2 B G2 B
R G1 R G1
G2 B G2 B
BGGR
R G1 R G1
G2 B G2 B
R G1 R G1
G2 B G2 B
GBRG
G2 B G2 B
R G1 R G1
G2 B G2 B
R G1 R G1
GRBG
G2 B G2 B
R G1 R G1
G2 B G2 B
R G1 R G1

The remark: all kinds of bayer patterns can be received from initial RGGB by flipping on X and/or Y.

Some sensors have possibility to set independed scale to G1 and G2. Considering that the accessible optics does not give the full permission of a sensor resolution, it can be used for increase in a dynamic range of a image sensor.

JP46 processing on the host

JP46 image decoding in MATLAB

JP4 format can be easy manipulated by MATLAB
JP4 image

1. Read image

I=imread('hdr02.jp4'); %read JP4 file like JPEG
  ,or online grab image from http like this:
I=imread('http://community.elphel.com/pictures/jp4.jpg');
  ,or cam:
I=imread('http://cam_ip/bimg'); %get online buffered image from cam
I=I(:,:,1);            %strip color data
2. Remove block grouping
Bayer CFA encoded image

II=deblock16x16(I);    %deblock image
%file deblock16x16.m
function y=deblock16x16(I)
y0=uint8(zeros(size(I)));
for x=1:16:size(I,1)
  for y=1:16:size(I,2)
    blk16=I(x:x+15,y:y+15);
      for dx=0:7
        for dy=0:7
          y0(x+2*dx  ,y+2*dy)   = blk16(dx+1,dy+1);
          y0(x+2*dx+1,y+2*dy)   = blk16(dx+9,dy+1);
          y0(x+2*dx  ,y+2*dy+1) = blk16(dx+1,dy+9);
          y0(x+2*dx+1,y+2*dy+1) = blk16(dx+9,dy+9);
        end
      end
    end
  end
y=y0;

2. Demosaic image (Decode from Bayer CFA (Color Filter Array) encoded image)
Decoded image
J=demosaic(II,'gbrg');

3. Show image

imshow(J);

JP46 to DNG image conversion

movies

See Movie2dng for conversion of JP4 movies to DNG.

still frames

Credits: Dave Coffin

This Linux command line tool allows conversion of JP4 files into a DNGs that dcraw and Adobe Photoshop can open.

Download LibTIFF v3.8.2

  • extract the tar.gz (this should create a new folder called "tiff-3.8.2")

Apply this patch: in terminal (first cd to path of libtiff.patch):

patch -p0 < libtiff.patch  

build LibTIFF:

cd tiff-3.8.2
./configure
make
sudo make install

Then compile this C program with:

gcc -o elphel_dng elphel_dng.c -ltiff -Wl,--rpath=/usr/local/lib

With Ubuntu 9.04 (and later) its possible that the wrong libtiff is selected automatically which results in a error like this when using the compiled application:

TIFFSetField: test.dng: Unknown tag 33421.
TIFFSetField: test.dng: Unknown tag 33422.
Segmentation faul

To solve that problem compile with this line forcing a specific libtiff version

gcc -o elphel_dng elphel_dng.c -lm /usr/local/lib/libtiff.so.3.8.2 -Wl,--rpath=/usr/local/lib

Then use the created application:

Usage: ./elphel_dng "gamma" "input.jpg" "output.dng"
Example: ./elphel_dng 100 example_JP4.jpeg example.dng

JP46 video stream decoding using MPlayer

JP46 stream can be decoded by MPlayer. Use this [this patch]

 patch . -p0 < debayer.diff in the mplayer source dir

Or download win32 binaries from sourceforge.

usage example: mplayer.exe test.avi -vf demosaic=deblock=1:method=7:pattern=3  -vo gl
mencoder example: mencoder.exe test.avi -ovc lavc -lavcopts vcodec=mjpeg -o output.avi -vf demosaic=deblock=1:method=1,scale
Debayer (Demosaic) algorithm variants provided by libdc1394:
- Nearest Neighbor : OpenCV library
- Bilinear         : OpenCV library
- HQLinear         : High-Quality Linear Interpolation For Demosaicing Of Bayer-Patterned
                     Color Images, by Henrique S. Malvar, Li-wei He, and Ross Cutler,    
                        in Proceedings of the ICASSP'04 Conference.                      
- Edge Sense II    : Laroche, Claude A. "Apparatus and method for adaptively interpolating
                     a full color image utilizing chrominance gradients"                  
                        U.S. Patent 5,373,322. Based on the code found on the website     
                     http://www-ise.stanford.edu/~tingchen/ Converted to C and adapted to 
                     all four elementary patterns.                                        
- Downsample       : "Known to the Ancients"                                              
- Simple           : Implemented from the information found in the manual of Allied Vision
                     Technologies (AVT) cameras.                                          
- VNG              : Variable Number of Gradients, a method described in                  
                     http://www-ise.stanford.edu/~tingchen/algodep/vargra.html            
                     Sources import from DCRAW by Frederic Devernay. DCRAW is a RAW       
                     converter program by Dave Coffin. URL:                               
                     http://www.cybercom.net/~dcoffin/dcraw/                              
- AHD              : Adaptive Homogeneity-Directed Demosaicing Algorithm, by K. Hirakawa  
                     and T.W. Parks, IEEE Transactions on Image Processing, Vol. 14, Nr. 3,
                     March 2005, pp. 360 - 369.
Pattern codes: pattern=0..3 -> [RGGB, BGGR, GBRG, GRBG]

Avisynth plugin for JP4 processing

Avisynth plugin also available

AVS script example:

LoadCPlugin("jp4.dll")
DirectShowSource("test.avi")
JP4("AHD","RGGB")

GStreamer plugins for Elphel JP4 image and video processing 

This project supported by http://ubicast.eu hosts Elphel related gstreamer components, so far:

  • the jp462bayer plugin converts color and monochrome JP46 Elphel bitstreams to Bayer raw format. In the future, it might support other JP4 modes (JP4, JP4-HDR, ...)
  • bayer2rgb2 converts raw Bayer streams to RGB images

jp462bayer: JP4 to Bayer

After jpegdec, re-arranges the pixels in Bayer format.

bayer2rgb2: debayer

It offers the same features as the legacy bayer2rgb, but by wrapping Libdc1394's debayering algorithms you can choose the interpoloation algorithm between : simple, bilinear, hqlinear, downsample, edgesense, vng, ahd, nearest

Example pipelines

gst-launch-0.10 rtspsrc location=rtsp://elphel:554 protocols=0x00000001 ! rtpjpegdepay ! jpegdec ! \
queue ! jp462bayer ! queue ! bayer2rgb2 ! queue ! ffmpegcolorspace ! videorate ! "video/x-raw-yuv, \
format=(fourcc)I420, width=(int)1920, height=(int)1088, framerate=(fraction)25/1" ! xvimagesink sync=false max-lateness=-1

Demosaicing/debayering links

A Study of Spatial Color Interpolation Algorithms for Single-Detector Digital Cameras. Ting Chen / Stanford University

Source code:

eLynx Image Processing SDK and Lab
libdc1394
Efficient, high-quality Bayer demosaic filtering on GPUs
http://svn2.assembla.com/svn/ge/libgedrawing/trunk/src/ImageBayer.cpp

Example files:

For more colorful examples please visit http://cinema.elphel.com/still-images

See also: