Tensorflow JNI development
From ElphelWiki
Contents
About
Based on this.
And this one - tensorflow/java/README.md.
How to:
- Install things
- Build libtensorflow.jar, libtensorflow_jni.so
- Install pom.xml and libtensorflow.jar to local maven repo in ~/.m2
- Modify Tensorflow JNI functions
- Create a maven project and use modified JNI
Install
- In Kubuntu
- Get TF 1.15.0 - git or archive
- Install bazel 0.25.2 - see *.deb in releases
Build
cd ~/git/tensorflow-1.15.0 ./configure # do not forget CUDA bazel build -c opt //tensorflow/java:tensorflow //tensorflow/java:libtensorflow_jni //tensorflow/java:pom
Artifacts of interest in bazel-bin/tensorflow/java/:
libtensorflow_jni.so libtensorflow.jar pom.xml
- xml and jar are taken care of.
- so will have to be in the library path - set LD_LIBRARY_PATH or PATH or go "java -Djava.library.path"
Install TF to local maven repo
mvn install:install-file -Dfile=bazel-bin/tensorflow/java/libtensorflow.jar -DpomFile=bazel-bin/tensorflow/java/pom.xml
How to uninstall maven local repo - and switch back to official versions form Central:
https://stackoverflow.com/questions/15358851/how-to-remove-jar-file-from-local-maven-repository-which-was-added-with-install
Modify TF JNI
For example, one wants to create a new function in org.tensorflow.TensorFlow package. Then, see:
tensorflow/java/src/main/java/org/tensorflow/ tensorflow/java/src/main/native/
- add native method to tensorflow/java/src/main/java/org/tensorflow/TensorFlow.java
- add to header file tensorflow/java/src/main/native/tensorflow_jni.h
- add to c file tensorflow/java/src/main/native/tensorflow_jni.cc
- rebuild and reinstall to mvn
Java maven project in Eclipse
- Create a new maven project
- Edit pom.xml:
<project> ... <dependencies> ... <dependency> <groupId>org.tensorflow</groupId> <artifactId>libtensorflow</artifactId> <version>1.15.0</version> </dependency> ... </dependencies> ... </project>
Basic example code
tfhello.java:
import org.tensorflow.TensorFlow; public class tfhello{ public static void main(String[] args){ System.out.println(TensorFlow.version()); } }